Thermodynamic Analysis of Substituent Effects on Proton Dissociation Equilibria of Substituted Pyridines

By Ignazio R. Bellobono * and Mario A. Monetti, Istituto Chimico, Università di Roma, 00185 Rome and Istituto di Chimica Fisica, Università di Milano, 20133 Milan, Italy

Equilibrium constants for the dissociation of $RC_5H_4NH^+$ (R = 3- and 4-Br, 3- and 4-CN, and 2- and 3-NH₂) have been measured as a function of temperature in the range 5–65 °C. For these and other literature data (R = H, 2-, 3-, and 4-NO₂, 2-, 3-, and 4-Me, 2-, 3-, and 4-CHO, 2-, 3-, and 4-Ac, 2-CH₂NHMe, and 4-NH₂) thermodynamic functions (ΔG^{0} , ΔH^{0} , and ΔS^{0}) have been calculated by a thermodynamic optimization method and by the Clarke and Glew procedure. Substituent effects, the environmental parameter for the reaction series examined, and solvent-solute interactions are discussed on the basis of Hepler's dichotomized enthalpy-entropy model, and the approach developed by Bolton et al.

RECENT investigations 1-4 of thermodynamics of acidbase equilibria in terms of a dichotomized enthalpyentropy model 5-8 have led to useful information about interpretation of substituent effects and solvent-solute interactions. In view of our interest in the thermodynamics of protonation of substituted pyridines and associated solvent effects, we have investigated the

¹ P. D. Bolton and F. M. Hall, Austral. J. Chem., 1968, 21,

proton dissociation equilibria (1) ($\mathbf{R} = 3$ - and 4-Br, 3and 4-CN, and 2- and 3-NH₂) of some monosubstituted

$$\mathrm{RC}_{5}\mathrm{H}_{4}\mathrm{NH}^{+} \xrightarrow[\mathrm{H}_{3}\mathrm{O}]{} \mathrm{RC}_{5}\mathrm{H}_{4}\mathrm{N} + \mathrm{H}^{+} \qquad (1)$$

pyridinium ions in aqueous solution as a function of temperature. To these data and to those of other

- ⁵ L. G. Hepler, J. Amer. Chem. Soc., 1963, 85, 3089.
 ⁶ J. W. Larson and L. G. Hepler in 'Solute-Solvent Inter-actions,' eds. J. F. Coetzee and C. Ritchie, Dekker, New York, 1969.
 - ⁷ P. D. Bolton and L. G. Hepler, *Quart. Rev.*, 1971, **25**, 521.
 ⁸ L. G. Hepler, *Canad. J. Chem.*, 1971, **49**, 2803.

<sup>939.
&</sup>lt;sup>2</sup> P. D. Bolton and F. M. Hall, J. Chem. Soc. (B), 1969, 259.
³ P. D. Bolton and F. M. Hall, J. Chem. Soc. (B), 1970, 1247.
⁴ P. D. Bolton, J. Ellis, and F. M. Hall, J. Chem. Soc. (B),

papers,^{9,10} as well as to other selected literature data, we have applied the approach developed by Hepler 5-8 and Bolton¹⁻⁴ and their co-workers, in order to assess quantitatively the relative importance of solvation factors in the effect of substituents.

EXPERIMENTAL

Measurements of pK_a .—The technique employed was the same as that already used in earlier work.⁹⁻¹¹

RESULTS AND DISCUSSION

Equilibrium (1) was measured as a function of temperature in the range 5-65 °C. Determination of the

$$\Delta G^0 = \Delta H_0^0 + AT \ln T + IT \tag{2}$$

represents ΔG^0 as a function of temperature in the particular case in which the difference (ΔC_p) between molar heat capacities of products and reactants (A = $\Delta C_p = d\Delta H^0/dT$ may be considered constant in the temperature range investigated. The values of the constants ΔH_0^0 , A, and I were obtained by an optimization procedure and are given in Table 2.

The thermodynamic functions were also calculated by

pK_a (K_a in mol l ⁻¹) Values for reaction (1) as a function of temperature									
T/K	R = 3-Br	R = 4-Br	R = 3-CN	R = 4-CN	$R = 2-NH_2$	$R = 3-NH_2$			
278.2	2.83 ± 0.016	3.87 ± 0.029	1.13 + 0.018	1.47 ± 0.029	$7 \cdot 14 \pm 0 \cdot 03$	6.36 ± 0.03			
288.2	2.77 + 0.021	3.77 + 0.010	1.15 ± 0.013	1.475 ± 0.015	6.98 ± 0.03	6.25 ± 0.04			
$293 \cdot 2$					6.82 ± 0.02				
298.2	2.72 ± 0.013	3.68 ± 0.008	1.17 ± 0.022	1.48 ± 0.021	6.71 ± 0.02	6.03 ± 0.04			
308.2	$2 \cdot 68 \pm 0 \cdot 025$	3.60 ± 0.017	1.19 ± 0.012	$1\cdot485\pm0\cdot018$	$6{\cdot}54 \pm 0{\cdot}02$	$5\cdot91\pm0\cdot04$			
318.2	2.64 ± 0.012	$3\cdot53\pm0\cdot030$	$1\cdot 20 \pm 0\cdot 023$	$1\cdot49\pm0\cdot008$	$6\cdot 38\pm 0\cdot 03$	5.77 ± 0.02			
$328 \cdot 2$	$2{\cdot}60\pm0{\cdot}023$	$3\cdot46\pm0\cdot021$	$1\cdot 22 \pm 0\cdot 019$	$1\cdot493\pm0\cdot014$					
338.2	$2\cdot55\pm0\cdot026$	$3\cdot38\pm0\cdot026$	1.13 ± 0.009	1.50 ± 0.012					

TABLE 1

TABLE 2

Thermodynamic functions and constants for reaction (1)

R	3-Br	4-Br	3-CN	1 4-0	CN	2-NH2	$3-\mathrm{NH}_2$	4-NF	I ₂ 2-	NO2	3-NO ₂	4-NO ₂
	1	2	3		±	0	0	10,00	19 0	0	9	10
$\Delta G^{\circ}/\text{cal mol}^{-1}$ at 298.2 K ^a	3711	5021	1596	20	19	9154	8227	12428	-2	2811 10	1078 10	1678 10
$A/cal mol^{-1} K^{-1}$	4.00	7.00	- 1.2	5 -0	0.20	19.90	15.60	27.5	0	2.46	-1.97	-2.12
ΔH_0^0 /cal mol ⁻¹	604	1033	-22	3	63	2237	1664	334	L	4986	-1257	-468
$I/\text{cal mol}^{-1} \text{ K}^{-1}$	$33 \cdot 20$	53.24	-1.0	1 5.	84	136.62	111.00	$187 \cdot 1$.0 —	-6-73	$3 \cdot 40$	-4.88
ΔG^{0} /cal mol ⁻¹ at 298·2 K ^b	3711	5021	1596	5 20	19	9179	8265	1242	9	2911	1078	1678
ΔH^{0} /cal mol ⁻¹ at 298.2 K ^b	1797	3120	-59	6 —	123	8170	6315	1154	0 -	5719	-1844	-1100
ΔS^{0} /cal mol ⁻¹ K ⁻¹ at 298.2 K ^b	-6.44	-6.39	- 7.3	5 - 7	7.17	-3.49	-6.64	— 3 ·]	3	-9.72	- 9·77	-9.50
ΔG^{0} /cal mol ⁻¹ at 298.2 K $^{\circ}$	3711	5020	1596	5 20	19	9170	8262	1243	1 -	2669	1106	1702
ΔH^{0} /cal mol ⁻¹ at 298.2 K $^{\circ}$	1768	3311	75	0 —	188	8288	7374	1121	1	6809	-2022	-1079
ΔS ⁰ /cal mol ⁻¹ K ⁻¹ at 298·2 K •	-6.52	-5.73	-7.8	7 — 7	7.40	-2.95	-2.97	4.()9 —	$13 \cdot 80$	-10.49	-9.33
ΔC_n /cal mol ⁻¹ K ⁻¹ at 298.2 K $^{\circ}$	-16.49	-17.45	1.74	().13	-63.38	-13.63	3.3() 9	6.16	17.89	10.81
$d(\Delta C_p)/dT/cal \text{ mol}^{-1} \text{ K}^{-2}$	$2 \cdot 05$	1.88	0.08	- (0.13	-8.80	-24.50	0.5	L (0.00	0.00	0.00
												2-CH ₂ -
\mathbf{R}	2 -Me	3-Me	4-Me	2-CHO	3-CHO	4-CHO	2-Ac	3-Ac	4-Ac	н	н	NHMe
No.	11	12	13	14	15	16	17	18	19	20	21	22
ΔG^{0} /cal mol ⁻¹ at 298·2 K ^a	8117 14	7722 14	8186 14	5131 15	5045 1	⁵ 6180 ¹⁵	3601 16	4447 ¹⁶	4788 16	7180 ⁹	7080 14	12207 17
$A/cal mol^{-1} K^{-1}$	18.00	16.10	18.00	16.50	12.00	15.00	7.50	7.40	9.50	-2.70	12.50	27.25
ΔH_0^0 /cal mol ⁻¹	2046	1871	2114	1800	1596	1678	1091	945	985	4830	1603	2548
$I/cal mol^{-1} K^{-1}$	$122 \cdot 87$	111.31	$122 \cdot 87$	105.14	79.90	100.52	51.13	53.89	66.85	-7.85	89.55	187.22
ΔG^0 /cal mol ⁻¹ at 298.2 K ^b	8117	7722	8186	5131	5045	6180	3601	4447	4788	7120	7080	12207
ΔH^{0} /cal mol ⁻¹ at 298.2 K ^b	7412	6671	7480	6719	5173	6150	3327	3151	3817	4020	5329	10536
ΔS^{0} /cal mol ⁻¹ K ⁻¹ at 298.2 K ^b	-2.45	-3.71	-2.45	$5 \cdot 24$	0.38	-0.17	-0.96 -	-4.39	-3.50	-10.40	-5.93	-5.19
ΔG^{0} /cal mol ⁻¹ at 298.2 K °	8125	7725	8184	5130	5031	6170	3618	4451	4794	7112	7075	12205
AH ⁰ /cal mol ⁻¹ at 298.2 K °	7572	7055	7029	6946	5564	6237	3502	2622	3560	4352	6409	10592
AS ⁰ /cal mol ⁻¹ K ⁻¹ at 298.2 K ^o	-1.85	-2.24	-3.87	6.09	2.32	0.22	-0.38	-6.13	-4.13	-9.25	-2.23	-5.50
∆C _r /cal mol ⁻¹ K ⁻¹ at 298.2 K ^e	78.92	47.68	275-33	$52 \cdot 85$	5.64	39.54	0.70	-2.06	15.57	20.74	-116.15	375.00
$d(\Delta C_p)/dT/cal \text{ mol}^{-1} \text{ K}^{-2} c$	-17.06	-14.06	65.77	-0.79	-7.30	4.86	-7.06	7.65	4.43	-3.14	2.37	-65.80

^a Experimental values (and standard deviation). ^b Calculated values [thermodynamic optimization method, equation (2)]. ^c Values obtained by the Clarke and Glew procedure.

acid-base concentration ratio was carried out spectrophotometrically in buffered solutions at constant ionic strength (0.02M). The results in the form of pK_a values and their standard deviations are summarized in Table 1.

For the calculation of thermodynamic functions from equilibrium data, two procedures were employed. In

⁹ I. R. Bellobono and P. Beltrame, J. Chem. Soc. (B), 1969, 620.

the method developed by Clarke and Glew.¹² Computation was carried out by the regression equation containing only three temperature-dependent variables, as the precision of the data did not allow a greater

 I. R. Bellobono and E. Diani, J.C.S. Perkin II, 1972, 1707.
 I. R. Bellobono and G. Favini, J. Chem. Soc. (B), 1971, 2034.
 E. C. W. Clarke and D. N. Glew, Trans. Faraday Soc., 1966, 62, 539.

complexity than this. The application of this procedure to acid ionization data has been thoroughly discussed.^{1-4,13} The recommended procedure was followed, with minor differences, such as that of calculating temperature variables by a suitable subroutine program.

By both calculation methods [use of equation (2). which we shall call hereafter the thermodynamic optimization method, and the Clarke and Glew procedure], the free energy (ΔG^0), enthalpy (ΔH^0), and entropy (ΔS^0) of reaction (1) could be evaluated as continuous, well-behaved functions of temperature. Their values at $298 \cdot 2$ K as well as those for equilibrium (1) with R = H and 2-, 3-, and 4-NO₂ are reported in Table 2. pK_a Values for these latter equilibria were taken from previous measurements 9,10 which had previously been fitted only to equation (2).

The same type of treatment (cf. Table 2) was also applied to other literature data for the proton dissociation of monosubstituted pyridinium ions in aqueous solution which meet the requirement of having been measured over the temperature range 5-65 °C. They include ions where R = H,¹⁴ 2-, 3-, and 4-Me,¹⁴ 2-, 3-, and 4-CHO,15 2-, 3-, and 4-Ac,16 2-CH2NHMe,17 and 4-NH2.18

The free energy and the enthalpy changes for the proton dissociation of pyridinium ions are linearly correlated. The points which deviate most are those for ortho-pyridinium ions (2-Ac, 2-CHO, 2-CH₂NHMe) and those for CHO and Ac groups (after excluding data for these derivatives $\Delta G_{298\cdot 2 \text{ K}}^0/\text{cal} \text{ mol}^{-1} =$ $0.836\Delta H_{298.2 \text{ K}}^0$ cal mol⁻¹ + 2453; correlation coefficient r = 0.9881 by the Clarke and Glew treatment; $\Delta G^{0}_{298^{\circ}2 \text{ K}}/\text{cal mol}^{-1} = 0.911 \Delta H^{0}_{298^{\circ}2 \text{ K}}/\text{cal mol}^{-1} + 2274;$ r = 0.9892 by the thermodynamic optimization method).

The anomalous behaviour of CHO and Ac groups is also shown by the Hammett σ plot and may be explained, partly at least, in terms of hydrogen bonding, since the protonated nitrogen of a pyridinium ion is one of the most electron-attracting side chains which can be visualized.19

Experimental data for unsubstituted pyridine deserve more comment. While measurements of pK_a by Perkampus and Prescher¹⁴ substantially agree with those of a previous paper 9 in the range 20-30 °C, a certain discrepancy arises at higher temperatures, so that the data of these authors yield for the enthalpy of reaction at 298.2 K a value of 6.41, by the Clarke and Glew method, and 5.33 kcal mol⁻¹ by the thermodynamic optimization method, as compared with 4.35 and 4.02kcal mol⁻¹ respectively (see Table 2) obtained from the experimental data of ref. 9. The latter values are 0.45-0.78 kcal mol⁻¹ below the calorimetric value; ²⁰ those derived from Perkampus and Prescher exceed it

¹⁸ P. D. Bolton, J. Chem. Educ., 1970, 47, 638.

¹⁶ H. H. Perkampus and G. Prescher, Ber. Bunsengesellschaft Phys. Chem., 1968, 72, 429.
 ¹⁵ S. Cabani and P. Cucchi, Ann. Chim. (Italy), 1959, 49, 205.
 ¹⁶ S. Cabani and G. Conti, Gazzetta, 1965, 45, 533.
 ¹⁷ D. E. Goldberg and W. C. Fernelius, J. Phys. Chem., 1959,

63, 1246.

J.C.S. Perkin II

by 1.21-0.53 kcal mol⁻¹. The reason for this is not clear; it may be simply attributed to experimental uncertainties, particularly in the measurements of pK_{\bullet} at high temperatures. This explanation, however, is not entirely satisfactory, since in this circumstance the same scattering should be observed for all other points.

As it has been observed for a limited number of data,¹⁰ and can be assessed more clearly now for the comprehensive series of ions examined in this paper (cf. Table 2), entropy changes, associated with solvation factors, are scarcely influenced by substituents. The correlation $mol^{-1} - 8.087$; r = 0.8133, by the Clarke and Glew procedure) reaches the limit of acceptability only when ortho-derivatives, as well as those containing CHO and Ac groups, are excluded. The points for unsubstituted

FIGURE 1 Proton dissociation of substituted pyridinium ions in aqueous solution. Entropy vs. enthalpy of reaction (1) at $298 \cdot 2$ K (numbers as in Table 2)

pyridine and for 4-aminopyridine are the most scattered. notwithstanding the fact that the experimental data for the latter ¹⁸ are to be considered among the most reliable: their exclusion leads to the better correlation of Figure 1b $(\Delta S^{0}_{298^{\circ}2 \text{ K}}/\text{cal mol}^{-1} \text{ K}^{-1} = 7.51 \times 10^{-4} \Delta H^{0}_{298^{\circ}2 \text{ K}}/\text{cal mol}^{-1} - 8.03; r = 0.9678)$. It has been shown that such isoequilibrium relationships ²¹ derive, by thermodynamics, from the Hammett op equation and the assumption $\delta \Delta C_p = 0$ (where δ indicates the difference between substituted and unsubstituted substrates) both of which are valid over a range of temperatures. The significance and limitations of enthalpy-entropy relationships have been critically discussed.²²

In the model proposed by Hepler for substituent and solvent effects, thermodynamic functions are taken to be sums of environmental contributions (solvent-solute

18 R. G. Bates and H. B. Hetzer, J. Res. Nat. Bur. Stand., 1960, 64, A, 427.

- ⁴⁰ L. Sacconi, F. Fabietti, and M. Champellin, J. E. Soc., 1960, 82, 3831.
 ⁴¹ J. E. Leffer and E. Grunwald, 'Rates and Equilibria of Organic Reactions,' Wiley, New York, 1963.
 ⁴² O. Exner, Coll. Czech. Chem. Comm., 1964, 29, 1094.

H. H. Jaffé, J. Amer. Chem. Soc., 1955, 77, 4445.
 L. Sacconi, P. Paoletti, and M. Ciampolini, J. Amer. Chem.

interactions) and internal contributions (intrinsic to the molecules of acid and base taking part in the acid ionization). With the assumption that $\delta \Delta S^{0}_{int} ca. 0$ for symmetrical reactions (as a consequence: $\delta \Delta S^{0} \approx \delta \Delta S^{0}_{env}$) and that $\delta \Delta H^{0}_{int}$ is independent of temperature, this model leads to an isoequilibrium relationship, between substituent-induced changes in enthalpy ($\delta \Delta H^{0}$) and entropy ($\delta \Delta S^{0}$), of the form (3) where β_{env} is the

$$\begin{split} \delta \Delta H^0 &\approx \beta_{\rm env} \delta \Delta S^0 - \left[(1+\gamma)/(d\gamma/dT) \right] \delta \Delta S^0 \\ &\approx \beta_{\rm env} \delta \Delta S^0 + (1+\gamma) \delta \Delta H^0_{\rm int} \\ &\approx \beta_{\rm env} \delta \Delta S^0 + \delta \Delta G^0 \end{split}$$
(3)

environmental parameter,' and γ is a parameter (' solvent parameter ') that depends on the solvent and the temperature. The evaluation of these parameters has limited the practical application of equation (3). On the other hand, it should be considered a fundamental possibility of obtaining useful information about solvent-solute interactions. Bolton and Hall² have derived a method of calculating the environmental parameter β_{env} , based on the comparison of enthalpy changes of two reaction series, A and B, which may be assumed to be proportional [equation (4)]. Expression (5) was

$$\delta \Delta H^{0}{}_{\rm A} = \theta \delta \Delta H^{0}{}_{\rm B} \tag{4}$$

$$\delta \Delta H^{\mathbf{0}}_{\mathbf{A}} = \theta \delta \Delta H^{\mathbf{0}}_{\mathbf{B}} - \theta \beta_{\mathrm{env}_{\mathbf{B}}} \delta \Delta S^{\mathbf{0}}_{\mathbf{B}} + \beta_{\mathrm{env}_{\mathbf{A}}} \delta \Delta S^{\mathbf{0}}_{\mathbf{A}}$$
(5)

then obtained. By a set of experimentally measurable quantities, θ , β_{env_A} , and β_{env_B} could thus be evaluated.

Equation (5) was applied to the thermodynamic data (A) examined in the present paper, by using as reference system the corresponding data for anilinium ions (B), for which the value of β_{env_B} of 413 K determined by Bolton and Hall 2 was employed. The problem was thus reduced to a set of systems relating two unknown constants θ and β_{env_A} . Only the thermodynamic functions of proton dissociation of m- and p-bromo- and nitro-pyridinium ions which were common to both reaction series could be used. From the values of thermodynamic functions of Table 2 and those reported ² for m- and p-substituted anilinium ions $\beta_{env_A}=417$ \pm 219 K and $\theta = 1.21 \pm 0.80$ were calculated, the uncertainties being given as standard deviations. Elimination of the pair of equations for R = 3- and 4-NO₂, which showed the greatest scattering in β_{env_A} and θ values, led to the values $\beta_{env_A} = 351 \pm 146$ K, and $\theta=0.956\pm0.419.$

From the known value of environmental parameter the $\beta_{env}\delta\Delta S^0$ and $(1 + \gamma)\delta\Delta H^{0}_{int}$ terms were calculated by equation (3). Results are summarized in Table 3. The $(1 + \gamma)\delta\Delta H^{0}_{int}$ values, which equal $\delta\Delta G^{0}$ [cf. equation (3)], show an excellent correlation with the substituent constant σ as shown in Figure 2. Furthermore, they agree fairly well with experimental $\delta\Delta G^{0}$ values which are reported in Table 3 for comparison. Determination of environmental ($\delta\Delta H^{0}_{env} = \beta_{env}\delta\Delta S^{0} + \gamma\delta\Delta H^{0}_{int}$) and intrinsic ($\delta\Delta H^{0}_{int}$) enthalpy contributions is not possible without knowing the value of the solvent parameter γ . The term $\beta_{env}\delta\Delta S^{0}$ gives quantitative information on the differential enthalpy effects brought about by substituents for the system in different states of solvation.

The good agreement of the β_{env} value for pyridinium ions with that for anilinium ions, which are of the same

TABLE 3 Comparison of $\beta_{env}\delta\Delta S^0$ and $(1 + \gamma)\delta\Delta H^0_{int}$ terms in equation (3) with experimental $\delta\Delta G^0$ values, at 298.2 K

		$(1 + \gamma)$		(1 + v)	
	$\beta_{env}\delta\Delta S^0/$	$\delta \Delta H^{0}_{int}$	$\beta_{env}\delta\Delta\delta^0/$	$\delta \Delta H_{int}^{0}$	δΔG⁰/
\mathbf{R}	cal mol-1 a	cal mol ⁻¹ a	cal mol-1 b	cal mol-1 b	cal mol ⁻¹ •
3-CN	-1180	-5179	-2352	-4807	-5508
4-CN	-1815	-4782	-2256	-4341	-5089
3-Br	-1506	-3135	-1789	-2852	-3397
4-Br	-1228	-1870	-1460	-1638	-2087
3-NH,	260	705	309	656	1119
4-NH,	-653	5455	-776	5578	5321
3-NO2	-2889	-5542	-3432	-4999	-6030
4-NO2	-2492	-4996	-2961	-4527	-5430
3-Me	-3.5	650	-4.1	650	614
4-Me	-576	1196	-684	1304	1078
3-Ac	-1369	-2418	-1626	-2161	-2661
4-Ac	-667	-2182	-792	-2057	-2320
a	Calculated	volues wi	+b 0	251 K	b Coloulated

^a Calculated values with $\beta_{env} = 351$ K. ^b Calculated values with $\beta_{env} = 417$ K. ^c Experimental values.

charge type, satisfies the requirements of Hepler's model. However, evidence indicating that the environmental parameter is approximately equal to the temperature of the solution should be considered as a consequence of the

FIGURE 2 Proton dissociation of substituted pyridinium ions, $(1 + \gamma)\delta\Delta H^{0}_{int}$ at 298.2 K vs. substituent constants σ : a, (ordinate to the left) with $\beta_{env} = 351$ K; b, (ordinate to the right) with $\beta_{env} = 417$ K (numbers as in Table 2)

approximations involved, rather than thought to have any other physical meaning. This statement, in fact, directly follows from assumptions made in Hepler's theory and equation (3) itself.

[2/2250 Received, 27th September, 1972]